1.1

lichternagnet
el. Stopp-uhr
und starfet unmittelbar die stoppuhr.
Nach Aurchfallen der Hoheh stoppt die 2. lichtschranke die stoppuhr.

$1,2,1$	h in m	0,30	0,50	0,70	0,90	1,10
t^{2} in s^{2}	0,063	0,10	0,14	0,78	0,23	

(5)

1.2 .2
(3)

$$
h=k \cdot t^{2} ; k=\frac{\Delta h}{\Delta t^{2}}=\frac{0,98 \mathrm{~m}}{0,20 \mathrm{~s}^{2}}=4,9 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

1.2 .3
(2)
7.2.4
(3) Falzeit wird größer; $g \sim \frac{1}{t^{2}} ; g$ wird damit bleiner
$1.3 \quad v=g t_{f}=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 0,60 \mathrm{~s} \Rightarrow v\left(t_{f}\right)=0,59 \frac{\mathrm{~m}}{\mathrm{~s}}$
(4)

2.1 Un è aus einem Metalidraht aus zulosen ("verdampfen"), muss
(4) die Austritsarbeit gegen die Bindungskräthe verrichtet werden.

Man erlöht die Temperatur durch elektr. Aufheizen d. Drahtes ("Glühwendel"), sodass Thee Enengie dafür austeicht.
2.2.1 $\quad \omega_{\text {el }}=E_{\text {kin }} \Rightarrow e u_{B}=\frac{1}{2} m_{e} v^{2} \Leftrightarrow v=\sqrt{2 \cdot \frac{e}{m_{e}} \cdot u_{B}}$
(3) $\quad v=\sqrt{2 \cdot \frac{1,6 \cdot 10^{-19} \mathrm{As}}{3,11 \cdot 10^{-31 \mathrm{~kg}} \cdot 1,8 \cdot 10^{3} \mathrm{v}} \Rightarrow v=25 \cdot 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}}$

$$
\sqrt{\frac{V A s}{k g}}=\sqrt{\frac{N m}{k g}}=\sqrt{\frac{k g m \cdot m}{s^{2} \cdot k g}}=\sqrt{\frac{m^{2}}{s^{2}}}=\frac{m}{s}
$$

2.3.1 $x=v_{0} t \Leftrightarrow t=\frac{x}{v_{0}} \quad ; y=\frac{1}{2} a t^{2}=\frac{1}{2} \cdot \frac{F_{e l}}{m_{e}} \cdot t^{2}=\frac{1}{2} \frac{q \cdot u_{A y}}{\frac{q \cdot m_{e}}{d}\left(\frac{x}{v_{0}}\right)^{2}}$
$y=\frac{1}{a_{y}} \cdot \frac{\tilde{q} \cdot u_{A y}}{d m_{e}}: \frac{\tilde{m}_{e} \cdot x^{2}}{2 q u_{B}} \Rightarrow y=\frac{u_{A Y}}{4 d u_{B}} \cdot x^{2}$
2.3.2
(6)

$$
\begin{aligned}
y_{G e S} & =y_{1}+y_{2} ; y_{2}=\frac{v_{y}}{v} \cdot L ; v_{y}=a_{y} \cdot t=a_{y} \cdot \frac{l}{v} \frac{\tilde{v}_{y}}{\overline{v_{x}}} y_{2} \\
y_{G e S} & =\frac{u_{A S}}{4 d u_{B}} \cdot e^{2}+\frac{a_{y} \cdot l}{v^{2}} \cdot L ; a_{y} \text { aus } 2: 3.1 ; v a u s 2.2 .1 \\
y_{G e S} & =\frac{u_{A Y}}{4 d u_{B}} e^{2}+\frac{\tilde{e} u_{A Y} \cdot \tilde{m}_{e}}{d \cdot m_{e} \cdot 2 \cdot u_{B}} \cdot e \cdot L \\
& =\frac{u_{A y} \cdot l^{2}}{4 d u_{B}}+\frac{u_{A Y} \cdot l \cdot L}{2 d u_{B}} \cdot \frac{2}{2} \Rightarrow y_{G}=\frac{l^{2}+2 l L}{4 d u_{B}} \cdot u_{A y}
\end{aligned}
$$

2.3 .3

$$
\begin{equation*}
y_{\max }=\frac{0,10 \mathrm{~m}(0,10 \mathrm{~m}+2 \cdot 0,199 \mathrm{~m}) \cdot 30,0 \mathrm{~V}}{4 \cdot 0,030 \mathrm{~m} \cdot 1,8 \cdot 10^{3} \mathrm{~V}}=0,00692 \mathrm{~m}=6,9 \mathrm{~mm} \tag{2}
\end{equation*}
$$

2,3.4
(4)

$$
\begin{aligned}
I & =\frac{\Delta Q}{\Delta t}=\frac{n \cdot e}{\Delta t} \Leftrightarrow n=\frac{I \cdot \Delta t}{e} \cdot=\frac{3,2 \cdot 10^{-9} \mathrm{~A} \cdot 1,0 \mathrm{~s}}{1,6 \cdot 10^{-19} \mathrm{As}} \\
& \Rightarrow n=2,0 \cdot 10^{10}
\end{aligned}
$$

